Курс дифференциального и интегрального исчисления является фундаментальным учебником по математическому анализу. Первое издание трехтомного 'Курса...' вышло в 1947-1949 гг. Книга выдержала множество переизданий, переведена на различные иностранные языки. Отличается систематичностью и строгостью изложения, простым языком, подробными пояснениями и многочисленными примерами. Высоко ценится математиками как уникальная коллекция различных фактов анализа, часть которых невозможно найти в других книгах на русском языке.
В первом томе рассказывается о теории пределов, функции одной переменной, производных и дифференциалах, исследовании функции с помощью производных, функциях нескольких переменных, функциональных определителях и их приложениях, приложении дифференциального исчисления к геометрии, задаче распространения функций.
Второй том 'Курса...' посвящен теории интеграла от функции одной вещественной переменной и теории рядов. Исключительно подробное, полное и снабженное многочисленными примерами изложение включает такие классические разделы анализа, как неопределенный интеграл и методы его вычисления, определенный интеграл Римана, несобственный интеграл, числовые и функциональные ряды, интегралы, зависящие от параметра и др. Подробно излагаются и некоторые мало представленные или совсем не представленные в элементарных учебниках темы: бесконечные произведения, формула суммирования Эйлера-Маклорена и ее приложения, асимптотические разложения, теория суммирования и приближенные вычисления с помощью расходящихся рядов и др.
Третий том содержит подробное изложение таких разделов дифференциального и интегрального исчисления, как теория кратных, криволинейных и поверхностных интегралов, элементы векторного анализа, теория функций ограниченной вариации и интеграл Стилтьеса, ряды и интегралы Фурье.
Учебник предназначен для студентов университетов, педагогических и технических вузов, а также математиков, физиков, инженеров и других специалистов, использующих математику в своей работе.